
Final Report 

Braden Meyerhoefer, David Alejos, Jiawei Zhang 

 

Section 1: 

Braden Meyerhoefer: 

• Execution tracing functionality 

• CLI 

• Visualization 

• Integration 

David Alejos: 

• File interaction functionality 

Jiawei Zhang: 

• Summarization functionality 

 

Section 2: 

 Reading and understanding other people’s code is really hard, but it is a necessary skill 

for developers to have as they move from project to project. Right now, a lot of time is wasted 

onboarding new developers as they read documentation and code to try and get to a point 

where they can start contributing. Codenser is a tool that aims to speed up that process by 

giving developers insight into how applications are working, and what pieces of code are the 

most important to understand. 

 Codenser does so using three core functionalities: execution tracing, summarization, 

and file interaction. Execution tracing shows the flow of how a program is running, 

summarization gives the location and quick summary of pieces of code, and file interaction 

shows how the various files of the application use each other. All of these modules are 

integrated into useful visualizations to assist new developers in understanding their new 

project. 

 

Section 3: 



https://meyerhoeferb.github.io/sd_final_submission/ 

Website, as requested, contains: images of teammates, brief biography of each teammate, 

video demo, links to writing, this report 

 

Section 4: 

Java libraries used: spoon, ASM, apache.commons.IO 

Python libraries used: os, networkx, matplotlib, pandas, plotly 

 

Section 5: 

For the file interaction module, the first thing that happens is that the names and 

locations of all the java files in the codebase are extracted using the apache commons IO 

library. Then, the java files are scanned, and all method calls with relevant information are 

extracted using the Spoon java library. The module then outputs a csv file containing the 

adjacency matrix for all the files, where files are adjacent if they call a method from another 

file. For the execution tracing module, we designed a java agent that runs in the Java Virtual 

Machine and outputs a log of when methods are called and returned. This is then processed by 

a Python script to output a weighted adjacency matrix, where weight is how many times one 

method calls another. For pseudocode generation which gives users a brief summary about 

some specific parts of the code, it first takes in the entire source code and breaks it down into a 

parsing tree. Each command and keyword are stored as the node of the parsing trees. Based on 

the relationship of these keywords and commands, we can find its left or right children under 

the node. Then based on the node information, we generate a brief English sentence summary. 

For example, if the node is a “for” statement, it will generate: “There is a for loop”, and based 

on its child information, we find the condition of the for loop as well as the operation within it. 

All of this information will be stored for later use. In addition, information such as line number, 

method name, and file name will also be stored with the code information in a csv file. 

 All of this output data is then processed by Python scripts to visualize in graph form, 

with heatmapping for the nodes. Heatmapping is calculated by incoming weight of each node. 

On hovering over the node, the user gets the relevant information about the node (class, 



method, file, etc.). All of this runs in a command line interface, which is simply a Python script 

using the terminal as a back end. Through the os library, the script calls the various functions as 

if from the command line, just automated so the user can do each part in a single command. 

 

Section 6: 

 David: Working on this project has made me realize how important it is to pick the right 

tools for the job and the importance of being flexible when it comes to redoing a part of a 

project even if it is almost done. If I had to start again, I would pick more effective tools to 

create what I needed, and I would also not hesitate to start over some parts when a better tool 

or idea comes along. Something else I would do differently is that instead of trying to work 

starting from the user facing components I would try to focus more on components that the 

user cannot see in the beginning and then worry more about the user facing parts later on. That 

is what I would do differently if I started this project again. 

 Braden: Execution tracing was not a new concept to me, we had done it by hand so 

many times in various computer science classes and it’s a pretty standard feature in many 

debugging tools. But to see how it works at a low level was so interesting, I had no idea a 

“premain” method was a thing, or even really that tools existed to modify code at the bytecode 

level. Working with such a complex library forced me to be creative in how I solved the 

problems I was faced with, figuring out how to do it in the simplest way I could (like having my 

part print to standard error and point standard error to a file instead of figuring out how to 

implement file IO at a bytecode level). It was also beneficial to build the CLI, as I hadn’t really 

done one for a serious application before, and having to call various functionalities written in 

different languages and different files was an interesting problem to solve. Managing a complex 

file structure like that was also new for me as well, and honestly quite satisfying. I wouldn’t 

really change anything if I went back, I’m proud of my work and the design/technical choices I 

made. I would make my part so much better though, knowing what I know now, because so 

much of the early weeks were spent finding ASM. If I had known about it from the start, I could 

have made my module much more robust. 



 Jiawei: If I can do the project again, I wish that I can figure out the direction of the 

project a little bit earlier. I have spent a lot of time trying to figure out the purpose and the 

approach for my part and I tried many different ways to accomplish the goal of the project. 

However, many of these attempts are not exactly the same as the original goal and my mentor 

has to correct me and provide me suggestions every single time. I personally think that I have 

wasted some time when trying to figure out the direction and during that period of time, I was 

really struggling and anxious even though I spent a lot of time on the project. 

 

 

Section 7: 

 The video on our website is not a final presentation, since we didn’t have to do one, but 

is rather me (Braden) doing a live demo and explanation of Codenser. Hopefully that is helpful 

for future groups. Everything should work out of the box for our project, make sure you run the 

setup script first to update the python packages and then the CLI should be good to go. I did 

forget to say in the video, download maven from https://maven.apache.org/download.cgi as 

our project needs it to run. Also read the README, I put some important developer notes and 

instructions on running it in there that I won’t type out again here. In short, run codenser.py 

and it’s kind of straight forward from there. The video explains how to analyze your own test 

files. 

 Summarization is one section that really needs some work, and then integration with 

the visualization. I was imagining each node of the execution trace having the line number and 

file it is located at, along with maybe some basic summarization if possible (which is really hard 

as we found out, but line number and file is definitely possible). If the test program writes to 

standard error itself that is potentially an issue for execution tracing. I know how to fix it but 

haven’t gotten around to doing so, so I leave that to future teams (hint: it would be a change in 

make_graph.py). The ASM tool was pretty tricky to use, so I went for the simplest execution 

trace. With that as a starting point, future teams could make it more complicated like weighting 

by runtime or something. 



 A good suggestion a classmate made was that this could be a module integrated into an 

IDE like Eclipse. That would be a cool thing for a future group to do. Or make it a GUI, although I 

don’t think it really adds anything to this project. 


