
Writing 3 Revised 
 
 Codenser’s three main functionalities (pseudocode generation, execution tracing, code 
base visualization) are things that for the most part have already been attempted. Execution 
tracing is a very common debugging tool and plenty of technologies already exist for doing so. 
We will be using something called the JVM Tool Interface to pull the execution tracing data from 
java programs that are running, but plenty of already developed products do something similar. 
Many applications have accomplished execution tracing before. CodeSonar is one such 
example, but most of the execution tracing tools also have some sort of visualization integration. 
And the application Pseudogen has already accomplished pseudocode generation, although not 
in the way we are aiming for. Libraries like Spoon give tons of information about Java 
applications, and summarization/translation are classic natural language processing problems 
that have been accomplished many times over. 
 
 What makes Codenser novel is not the technologies that go into it, but rather the 
integration of all the pieces together. While each problem has been solved individually and 
products exist for those solutions, all three of these things complement each other in such a way 
that they really belong together in one application. The best way to understand new code bases 
quickly is to use visualization of code with execution traces and succinct summaries of what the 
code is doing. No other application exists that does all three of these things: visualization, 
execution tracing, and summarization. The one technology going into our product that is unique 
and innovative is the pseudocode generation. As previously stated, there does exist an 
application called Pseudogen that generates natural language translations of machine code. It 
does so by using machine learning models, a really creative application of machine translation 
technology. But the text Pseudogen generates is literally a line for line translation of the code; it 
does not make it any shorter or easier to understand. In some situations, it may actually 
increase the time a developer would take to read and understand what the code does. Our goal 
at Codenser is to make the learning process as smooth as possible. Using a combination of 
machine learning from Pseudogen and the code analysis from Spoon, our pseudocode will be a 
summarization of what the code does, not a direct translation. This functionality, integrated with 
the execution tracing and code visualization, will make Codenser the most effective tool on the 
market for onboarding new developers, and it is this integration that separates Codenser from 
the already existing tools. 
 
Technical feasibility 
 

For Codenser, we are going to use different existing tools in order to complete the 
functionalities it is designed for. Codenser has three major functionalities: first of all, it can take 
in the source code and generate pseudo code, which is easier and faster for developers to read. 
Although it can make group projects more efficient, the difficulty of fully developing it is 
challenging mainly because of two factors. The first one is the analysis process of the source 
code. A program can be complicated based on how it is structured, how many classes does the 
source code had and what are the relationships between different classes and so on, therefore, 
it is hard to analyze all of these by a single program.We have an existing tool called spoon to 



solve all the problems mentioned before. “Spoon is an open-source library that enables 
programmers to transform and analyze Java source code. Spoon also allows us to parsing the 
data. In addition, Spoon can takes as input source code and produces transformed source code 
ready to be compiled” (spoon. java) which solves the problems we are facing. ” Although there 
are more organizing work needs to be done, we are confident that with the help of Spoon, we 
can analyze the source code successfully. The second challenge for the first functionality 
Codenser has is the generation of pseudo code. There is also an existing tool we can use to 
solve this, and the program is called Pseudogen. Pseudogen is a program that can analyze the 
source code and generate the pseudo code which is similar to Codenser, however, the pseudo 
it generates is redundant and it is even longer than the original code. The purpose of 
Pseudogen is obvious different than ours, however, we can use the method of how Pesudogen 
generate the pseudo code and simplify based on that. Even though more algorithms are needed 
to develop the simplification process, we believe it is doable by organizing the result Pseudogen 
provides and only present the essential part of the source code to users. 
 
 Building on the pseudocode generation functionality, the second functionality that 
Codenser has is an execution trace of the entire source code, which is designed to show the 
order in which the functions are running. Codenser iis helpful because it explains the logic 
behind the source code and make it easier for users to understand. A tool called the JVM Tool 
Interface is helpful for this specific functionality. “JVM is known as Java Virtual Machine which  
acts as a run-time engine to run Java applications. JVM is the one that actually calls the main 
method present in a java code. JVM is a part of JRE”(Java Runtime Environment). It can also 
develop Java code on one system and can expect it to run on any other Java enabled system 
without any adjustment. With the help of JVM, it is realistic to make an execution trace. Last but 
not least, Codenser can generate a graph which gathers all the information, users are able to 
click into different branches to see the details about that specific part of code. For this part, 
there are many tools that can be helpful, we decided to use the java library tools which can 
generate graph based on the code. Therefore, once we are able to generate pseudo code, a 
visualization of the entire source code is completely doable. In all, we have all the tools we need 
to develop Codenser, and we are confident that it will fulfill all the functionalities we designed at 
the first place.   

 
Cost, risks, and risk mitigation 
 

The hardware and software costs for this project are around 5,000 dollars, a very small 
amount compared to the impact and potential profit it can generate since most of our tools are 
open source so we do not have to pay for them. This means that we will be finding a way to 
make our product different than other similar tools currently on the market (Like Pseudogen) by 
improving upon and combining already existing functionalities from these tools. Furthermore a 
risk that this project takes is competing against these tools which are free and already provide a 
decent amount of functionality. We plan to mitigate this risk by providing multiple layers of 
functionality: pseudocode, visualization, and execution tracing along with an attractive and easy 
to understand user interface which will demonstrate the superiority of our product. This will 
make Codedenser the best option in its market which will attract more users who will in turn 



recommend it to their peers bringing more exposure. Being better and providing more 
functionality than the competition will mean having a larger and more complicated codebase 
than said competition. 

 
Codedenser will have a larger codebase than the competition but it will still run in a short 

amount of time since it will take around 5000 to 6000 lines of code given that it will provide more 
than just one functionality with each functionality taking a significant amount of lines to function 
properly. For example, the visualization aspect needs to get all the java classes there are, 
determine which one is the most important, and then using that information to compute the 
location of each class representation on the screen and the size it will have. All of that will 
require a large amount of lines and it is just for one layer of functionality that Codedenser will 
provide. The other functionalities mentioned above will also require many lines which will add to 
the total amount of lines that Codedenser will have. In addition to each component, we will have 
to write additional lines of code to make sure that all of these components work well together to 
provide a functional and polished product. 

 
To do this we will work on separate aspects of Codedenser at the same time by having 

each of the members of our team work on a different one and then we will integrate all of our 
different parts to finish our product. Some milestones for our project are: finding tools that we 
will use to develop our product, testing the tools that we found by having simpler examples than 
our final target, scaling up from simple examples to more complex ones, and integrating 
different parts of the project together. We have already found tools that will be used for the 
development of Codedenser and we are currently working on having simple examples of these 
tools performing their job in our product’s context. We estimate that by the end of this year we 
will reach our tool testing milestone and within the first half of next year we will have both large 
scale examples and integration completed. 

 
With integration completed our product will be ready to launch into the market and we 

believe that Codedenser will take the lead against other competitors in the market and will be an 
extremely useful tool for consumers. This means that it will be successful overall and will bring 
innovation into its target market.       


