
 Writing 1 Revised
 Jiawei Zhang

Programmers work more frequently with each other nowadays, and it is inevitable for
them to understand the code from other members in order to integrate their work and connect
every component together. In many software companies, a project can be too much work for a
single developer, that is why in most cases, it is divided within a group. During this process, it is
not realistic for other members to walk you through their work, considering the large workload of
the project in companies, therefore, developers need to read the code by themselves and try to
understand them. For a company such as Google or Facebook, the workload of a project is
usually magnificent, sometimes it can be millions of lines of code. Under this circumstance, it is
not only time consuming considering the size of the project, but also a waste of time if the code
from other members is redundant. I believe everyone has run into challenges while working with
code from others, and it can be really frustrating. But imagine there is a program that a
developer can run the code base on, and it will return the pseudocode as well as the simple
description for the source code. This would no doubt, make the code base much easier to read
and therefore accelerate the process of working as a team. In fact, this is exactly the project we
are working on. Beside the functionality mentioned above, this program named “Codenser” can
also provide an execution trace for developers to get a better understanding of the source code
which is really helpful when trying to understand the logic behind the code. Last but not least,
the program can present a visualization of the entire source code by organizing it into an
intuitive diagram.

This program is called Codenser, and we believe it will make a great contribution for the
Computer Science industry for the following reasons. First of all, it can save a remarkable
amount of time for every developer as well as the entire team. Take one of the classes in our
school as an example: we had an operating system project in junior year, and the goal was to
build a file system server. Although each of us had a clear goal on the part that we were
responsible for, we had a really hard time integrating each component together because the
code had thousands of lines. In the end we had to explain to other group members about the
part that each of us was working on and that was extremely time consuming. This was just an
experience of working on a project in school, there is no doubt that projects in industry will be
much harder and more complicated than those in college, therefore, time wasting would be a
much bigger issue that no one can ignore any more. Based on research conducted on team
projects, the average time developers spent on integration take up to almost 40 percent. This is
when Codenser can be extremely useful, by giving a simple description of the source code,
developers can save most of the time reading the code from others. In addition, it can provide
information on what functions are running in what order by showing the execution of trace. With
these functionalities, Codenser can greatly increase the project efficiency and make it more
convenient for developers. This is why this program is worth founding, it will make more
convenient and efficient for programmers when they are working with others.

However, there will be some technical challenges when we develop Codenser. For
example, summarizing the source code to pseudocode is already very difficult, not to mention
our final goal is to give a brief description in English sentences. In addition, can the execution

trace provide valuable information when there are hundred of functions? Last but not least, what
if the source code has bugs? Can Codenser still give useful summary of the code? Questions
like these make the development process really challenging, but we believe that our team will
solve these problems and Codenser will be a success.

Writing 1 Revised
Braden Meyerhoefer

 The technology that is a large part of everyone’s daily lives runs on massive code bases.
Popular applications such as Microsoft Windows have millions of lines of code and require
constant updating to maintain security, relevance, and functionality. This is a long and hard
process, especially when releasing broken code or failing to make meaningful updates and
additions to products in a reasonable time period can lead to huge losses of revenue. This
process is even harder for new developers, who must first read and understand the existing
code before they can start producing changes to it. Right now, the main way of learning how
code works is by reading comments, documentation, and the code itself. But comments can be
unreliable, and documentation hard to read and understand. Developers need a tool for easily
understanding huge, hard to comprehend code bases. And right now, there isn’t one. Our
product, Codenser, will be able to fill this void.

 As a useful metaphor, imagine a car mechanic who has been in the workforce for a
couple years. This mechanic has studied some sort of engineering in school and worked with a
number of different cars fixing and possibly modifying them; maybe they’ve even built their own
car from scratch, engine and all. It is safe to say that this mechanic has a pretty in-depth
knowledge of how engines in general work, basic electronics and hydraulics, all the things that
go into building a car. Now that mechanic decides to switch gears and joins NASA, working on a
team that is building a brand-new spaceship. To help get them up to speed, the team provides
them with a complete schematic of the rocket, complete with a 10000-page booklet of
documentation explaining everything. This is kind of like what it is to be a programmer joining a
new team. All developers have a basic understanding of how code works, how computers work,
how applications work, etc. But this does not mean that they can jump into a massive new
project and immediately understand how everything works and make changes to it. Even the
best rocket scientist in the world can’t just look at a new rocket and immediately start improving
or fixing it. But what if instead of reading a ridiculous amount of mind-numbing documentation,
the mechanic could press a button on the rocket and see a diagram light up highlighting exactly
which components are being activated, how they work together, and get a summary description
of what each part does. That would make familiarizing themselves with how everything works on
the new project so much easier.

 This is what Codenser aims to do with code. A new developer can run the code base
through the application, which will return to them pseudocode, execution traces for all
functionality, and organize it all into an intuitive, interactive diagram. The developer could then
click on the various functionalities of their project and see exactly which classes are being used,
which functions are running and in what order, and get pseudocode descriptions of what these
functions are doing. There will be technical challenges of course. Writing good pseudocode can
already be difficult, and automating that so a computer can read code and deduce what is
important and what it is trying to do is even harder. Execution traces can be technical, long, and
hard to follow. Portraying or summarizing that in a meaningful way will be a challenge. And
usefully conveying all of this information in a visually pleasing and efficient way does not have
an obvious solution either. These are all hurdles that we as a team believe can be overcome

and are seeking funding so that Codenser can become an application assisting development
teams everywhere.

David Alejos Revised Writing 1

Codedenser

Many software companies today assign projects to a team of people instead of a single
person. This can be beneficial for the developers involved because the work can be evenly split
up and some developers can specialize in one part of the project so efficiency can also be
increased. However, for developers working in a team is more than just creating a part of a
product since after everyone has done his or her part the code from the project needs to be
integrated together. Problems are very likely to arise from this because there is no one person
in the team who worked on everything so explaining is bound to happen between team
members during integration. Integrating parts of a project together gets extremely complicated
when the project is of a large size both in workers and amount of code. This also implies that
members of a project will have to exchange information about the code which is another source
for complications. This can often lead to a large variety of problems such as incompatibility
between different project modules, unexpected bugs caused by other parts of the project, and
unexpected input or output from a module due to unknown behavior from the rest of the project.
Our product, Codedenser, aims to take a piece of code and then explain what it does in more
understandable terms like a mixture in English and code (Also called pseudocode). Solving
these and many other problems resulting from integration is no small task and that could spell
major trouble for both developers and companies due to missed project deadlines caused by
inability to integrate said project which can end up creating conflict between the two parties.

These problems will be avoided with the use of our product because it aims to be a tool

used for prevention and solving the complications mentioned above by making it such that the
idea or ideas behind code can be easily understood without having to read through all of it. This
can be especially useful when a person needs to understand a piece of code if the author is not
present or not available to talk to. With our product there will be no need for the author of the
code because it will take in the code and then provide the ideas behind it. If the ideas behind
code are laid out to be read then many integration problems for group projects would be solved
because there will be a simple, reliable, and consistent explanation for all parts of the project
granted by our product. This is bound to make teamwork and integration for code-based
projects much easier than having team members constantly explain their code to others by
saving time and by having only one universal explanation for the code. Companies will be
benefited from this by being able to meet deadlines, avoid stress for developers, and avoid
conflict between different parties working on the same project.

Codedenser will alleviate many problems for both companies and developers but there

will be some technical difficulties in creating it. Some examples of this are giving a consistent
summary of similar (or identical in function) pieces of code and summarizing said code to a
shorter and more understandable form. These complications will be resolved through testing
and careful design to make a successful product. Investing in our product has the chance to
bring in considerable profit due to the sheer amount of applications that it can have for many
different software companies.
 Writing 2

 Codenser at its core really does two things: it traces execution pathing and generates
pseudocode summaries of methods. These are by no means new ideas and there are

applications that do them already. For the Python programming language, a tool exists called
Psuedogen, which generates pseudocode from Python source code using machine learning. It
naturally does this for Python to English and Python to Japanese, but also provides a framework
for doing this for any desired source code/natural language pairing. There is also a multitude of
tools for execution tracing on the market, many of which are free. If a developer is coding in an
IDE, chances are the debugger included in that application has some sort of trace function. In
addition to that, tools such as Flow and HyperDebug provide execution tracing with GUI
visualizations.

These tools all have been around for a while and work well, but we as a team believe
that Codenser will provide significant improvements on what these tools have to offer. Starting
with pseudocode generation, the pseudocode that Psuedogen produces seems to be easy to
read and accurate. The problem is that it does not really shorten what needs to be read, just
translates the code into natural language. That makes it easier to read, but not necessarily
faster or easier to understand. It is really just reading the code for the developer, not saying
what it’s doing at a high level (like pseudocode should). Codenser will improve upon this by
actually generating natural language summaries of the code, not just a word for word
translation. Where a product like Psuedogen will take 50 lines of code and produce 50 lines of
english, Codenser will take 50 lines of code and produce a couple lines summarizing the
functionality.

In terms of execution tracing, the output of the current tools can sometimes be very

technical and hard to read themselves. We believe the most important thing for a new developer
to see is the order of execution and how classes/methods are interacting with each other, and
for this reason will condense the trace down to that. Any further insight the developer wants can
then be gleaned from the summarization, or inspecting the code itself when necessary. The
execution trees and graphics these apps are displaying are also sometimes hard to follow as
well, and we will try to make the display easier to read and follow for Codenser. And finally,
where Codenser will really excel is the integration of the execution tracing and the code
summarization. In this easy to follow visualization, the user will see how methods are executing
and be able to click on them to not only highlight the execution path, but also view the
generated pseudocode for the relevant methods. No other application has the integration of the
two, and this is what will really set Codenser apart. With the advantages of Codenser
mentioned, we believe it will attract many potential users who are in the Computer Science
industry.

The major potential users that we are targeting are programmers who need to work on

projects with others in Computer Science industry. First, because Codenser can generate a
simplified pseudocode, which is a summary for the source code, developers do not need to
spend a large amount of time on reading code from others. This is really helpful not only for
developers, but also for companies as well. Projects in Computer Science industry usually
needs million lines of code, and if one of the team members need to understand the code from a
partner, reading though the code and understand sometimes needs days. However, with a
program that can summarize the entire source code and provide visualization of the main

branches, developers can save a great amount of time while integrating code together. In
addition, it can also improve the efficiency of in-progress project for the company.

Besides professionals, students can also benefit from Codenser as well. It is common

that students in school are assigned some group projects, especially in college. Therefore, it is
also inevitable for them to spend a large amount of time trying to understand the code from
other group members. This is extremely time consuming considering the workload of other
classes. Codenser can make the group project more efficient to all of the members, so students
are able to understand the source code faster. In all, Codenser will be helpful to both
professional programmers who work in industry and students who are learning in school
because it can make the source code easier to read and save them a remarkable amount of
time.

Considering the functionalities and benefits that Codenser will bring, the project is a

social-impact project which aimed at foundations. Codenser has three major functionalities, first
of all, it can take in the source code and generate a simplified pseudocode as well as a brief
summary in English sentences. Secondly, it can provide information on what functions are
running in what order by showing the execution of trace. This functionality can help users
understand the logic behind the source code, so they can have a better understanding on the
original code base. Last but not least, it provides a graph of the entire source code and breaks it
down into different branches with details, which makes the code from other members in the
group easier to read. All of these three functionalities mentioned above solve one of the biggest
problems programmers have while working in teams, which is time consuming. Based on
research conducted on team projects, the average time developers spent on integration take up
to almost 40 percent. If a program can help our targeted audience to save 40 percent of its total
working time, they are very likely to use the product. As the developers of Codenser, we want to
show our audience what can this product do and how does it can make reading code easier for
them when working in groups. In addition, we want to use social media to let more people know
about our product, so more potential users will notice it. By explaining the functionalities of
Codenser, more and more programmers will be willing to use it. These functionalities will also
attract companies that assign projects to a team of people as well as companies that have a
large code base that needs to be explained to new recruits.

 In today's world more companies are developing large software projects that are
assigned to a team of developers instead of giving a single developer a standalone task to be
completed individually. Working in a team means that developers will have to make all of their
code compatible and fully functional with the rest of the code. This can often lead to a large
variety of problems such as incompatibility between different project modules, unexpected bugs
from integration, and unexpected input or output from a module due to unknown behavior from
the rest of the project. Our product, Codedenser, aims to take a piece of code and then explain
what it does in more understandable terms like a mixture in English and code (Also called
pseudocode). Codedenser has the potential to greatly decrease the amount of time that it would
take a team of developers to understand the entire project that they collectively worked on. This
will also have the benefit of having a uniform explanation for all of the code which leaves less

room for misunderstandings within the team. These two benefits have the potential to greatly
reduce the time it takes for software companies to develop new software which could mean an
increase in efficiency. An increase in efficiency for team projects could affect society today
because more content could be developed at a faster rate than before. However, team projects
is just one area where our product could change the landscape, another example would be the
time it takes to train a new employee in some companies where there is already a large existing
code base.

For many companies that already have developed software which has many lines of
code, training an employee could be very hard for both the company and the new employee.
This can be hard because for the new developer to begin working, he or she will have to read
for most of the code (Possibly all of it) to begin actually working for the company. Reading
through and understanding code takes an extremely long amount of time and a great deal of
effort which makes the training of a new recruit expensive for a company. Codedenser will
automate the understanding part of the process which will significantly reduce the time it would
take to train a new employee. Reduction in training time could be an incentive for companies to
hire more people since the cost of hiring a new worker would decrease since less time is used
for training.

Less costly recruitment and more effective teamwork opens up the possibility for much

faster deployment of new software products which will make Codedenser a very valuable tool. It
will also be a very powerful tool that will have many applications but it will not need to be
regulated since it will be very hard to put it to bad use. It will be hard because our product only
simplifies code and many sensitive code bases are not available to the public and if it is used to
help an attacker decipher an encrypted message it will not provide the attacker with an
advantage. This makes Codedenser a tool that can only be used with good intentions and a
strong software that many consumers will want to have.

Writing 3

 Codenser’s three main functionalities (pseudocode generation, execution tracing, code
base visualization) are things that for the most part have already been attempted. Execution
tracing is a very common debugging tool and plenty of technologies already exist for doing so.
We will be using something called the JVM Tool Interface to pull the execution tracing data from
java programs that are running, but plenty of already developed products do something similar.
Many applications have accomplished execution tracing before. CodeSonar is one such
example, but most of the execution tracing tools also have some sort of visualization integration.
And the application Pseudogen has already accomplished pseudocode generation, although not
in the way we are aiming for. Libraries like Spoon give tons of information about Java
applications, and summarization/translation are classic natural language processing problems
that have been accomplished many times over.

 What makes Codenser novel is not the technologies that go into it, but rather the
integration of all the pieces together. While each problem has been solved individually and
products exist for those solutions, all three of these things complement each other in such a way
that they really belong together in one application. The best way to understand new code bases
quickly is to use visualization of code with execution traces and succinct summaries of what the
code is doing. No other application exists that does all three of these things: visualization,
execution tracing, and summarization. The one technology going into our product that is unique
and innovative is the pseudocode generation. As previously stated, there does exist an
application called Pseudogen that generates natural language translations of machine code. It
does so by using machine learning models, a really creative application of machine translation
technology. But the text Pseudogen generates is literally a line for line translation of the code; it
does not make it any shorter or easier to understand. In some situations, it may actually
increase the time a developer would take to read and understand what the code does. Our goal
at Codenser is to make the learning process as smooth as possible. Using a combination of
machine learning from Pseudogen and the code analysis from Spoon, our pseudocode will be a
summarization of what the code does, not a direct translation. This functionality, integrated with
the execution tracing and code visualization, will make Codenser the most effective tool on the
market for onboarding new developers, and it is this integration that separates Codenser from
the already existing tools.

Technical feasibility
For Codenser, we are going to use different existing tools in order to complete the functionalities
it is designed for. Codenser has three major functionalities: first of all, it can take in the source
code and generate pseudo code, which is easier and faster for developers to read. Although it
can make group projects more efficient, the difficulty of fully developing it is challenging mainly
because of two factors. The first one is the analysis process of the source code. A program can
be complicated based on how it is structured, how many classes does the source code had and
what are the relationships between different classes and so on, therefore, it is hard to analyze
all of these by a single program.We have an existing tool called spoon to solve all the problems
mentioned before. “Spoon is an open-source library that enables programmers to transform and

analyze Java source code. Spoon also allows us to parsing the data. In addition, Spoon can
takes as input source code and produces transformed source code ready to be compiled”
(spoon. java) which solves the problems we are facing. ” Although there are more needs to be
done, we are confident that with the help of Spoon, we can analyze the source code
successfully. The second challenge for the first functionality Codenser has is the generation of
pseudo code. There is also an existing tool we can use to solve this, and the program is called
Pseudogen. Pseudogen is a program that can analyze the source code and generate the
pseudo code which is similar to Codenser, however, the pseudo it generates is redundant and it
is even longer than the original code. The purpose of Pseudogen is obvious different than ours,
however, we can use the method of how Pesudogen generate the pseudo code and simplify
based on that. Even though more algorithms are needed to develop the simplification process,
we believe it is doable by organizing the result Pseudogen provides and only present the
essential part of the source code to users.

 The second functionality that Codenser has is an execution trace of the entire source
code, which is designed to show the order in which the functions are running. Codenser iis
helpful because it explains the logic behind the source code and make it easier for users to
understand. A tool called the JVM Tool Interface is helpful for this specific functionality. “JVM is
known as Java Virtual Machine which acts as a run-time engine to run Java applications. JVM
is the one that actually calls the main method present in a java code. JVM is a part of JRE”(Java
Runtime Environment). It can also develop Java code on one system and can expect it to run on
any other Java enabled system without any adjustment. With the help of JVM, it is realistic to
make an execution trace. Last but not least, Codenser can generate a graph which gathers all
the information, users are able to click into different branches to see the details about that
specific part of code. For this part, there are many tools that can be helpful, we decided to use
the java library tools which can generate graph based on the code. Therefore, once we are able
to generate pseudo code, a visualization of the entire source code is completely doable. In all,
we have all the tools we need to develop Codenser, and we are confident that it will fulfill all the
functionalities we designed at the first place.

Cost, risks, and risk mitigation

The hardware and software costs for this project are around 5,000 dollars, a very small
amount compared to the impact and potential profit it can generate since most of our tools are
open source so we do not have to pay for them. This means that we will be finding a way to
make our product different than other similar tools currently on the market (Like Pseudogen) by
improving upon and combining already existing functionalities from these tools. Furthermore a
risk that this project takes is competing against these tools which are free and already provide a
decent amount of functionality. We plan to mitigate this risk by providing multiple layers of
functionality: pseudocode, visualization, and execution tracing along with an attractive and easy
to understand user interface which will demonstrate the superiority of our product. This will
make Codedenser the best option in its market which will attract more users who will in turn
recommend it to their peers bringing more exposure. Being better and providing more
functionality than the competition will mean having a larger and more complicated codebase
than said competition.

Codedenser will have a larger codebase than the competition but it will still run in a short

amount of time since it will take around 5000 to 6000 lines of code given that it will provide more
than just one functionality with each functionality taking a significant amount of lines to function
properly. For example, the visualization aspect needs to get all the java classes there are,
determine which one is the most important, and then using that information to compute the
location of each class representation on the screen and the size it will have. All of that will
require a large amount of lines and it is just for one layer of functionality that Codedenser will
provide. The other functionalities mentioned above will also require many lines which will add to
the total amount of lines that Codedenser will have. In addition to each component, we will have
to write additional lines of code to make sure that all of these components work well together to
provide a functional and polished product.

To do this we will work on separate aspects of Codedenser at the same time by having

each of the members of our team work on a different one and then we will integrate all of our
different parts to finish our product. Some milestones for our project are: finding tools that we
will use to develop our product, testing the tools that we found by having simpler examples than
our final target, scaling up from simple examples to more complex ones, and integrating
different parts of the project together. We have already found tools that will be used for the
development of Codedenser and we are currently working on having simple examples of these
tools performing their job in our product’s context. We estimate that by the end of this year we
will reach our tool testing milestone and within the first half of next year we will have both large
scale examples and integration completed.

With integration completed our product will be ready to launch into the market and we

believe that Codedenser will take the lead against other competitors in the market and will be an
extremely useful tool for consumers. This means that it will be successful overall and will bring
innovation into its target market.

